23 research outputs found

    Reliable Generation of Native-Like Decoys Limits Predictive Ability in Fragment-Based Protein Structure Prediction

    Get PDF
    Our previous work with fragment-assembly methods has demonstrated specific deficiencies in conformational sampling behaviour that, when addressed through improved sampling algorithms, can lead to more reliable prediction of tertiary protein structure when good fragments are available, and when score values can be relied upon to guide the search to the native basin. In this paper, we present preliminary investigations into two important questions arising from more difficult prediction problems. First, we investigated the extent to which native-like conformational states are generated during multiple runs of our search protocols. We determined that, in cases of difficult prediction, native-like decoys are rarely or never generated. Second, we developed a scheme for decoy retention that balances the objectives of retaining low-scoring structures and retaining conformationally diverse structures sampled during the course of the search. Our method succeeds at retaining more diverse sets of structures, and, for a few targets, more native-like solutions are retained as compared to our original, energy-based retention scheme. However, in general, we found that the rate at which native-like structural states are generated has a much stronger effect on eventual distributions of predictive accuracy in the decoy sets, as compared to the specific decoy retention strategy used. We found that our protocols show differences in their ability to access native-like states for some targets, and this may explain some of the differences in predictive performance seen between these methods. There appears to be an interaction between fragment sets and move operators, which influences the accessibility of native-like structures for given targets. Our results point to clear directions for further improvements in fragment-based methods, which are likely to enable higher accuracy predictions

    On heuristic bias in fragment-Assembly methods for protein structure prediction

    Get PDF
    We discuss the issue of heuristic bias in fragment-Assembly methods for protein structure prediction. We explain the importance of this issue, which has been paid insufficient a.ention by evolutionary computation researchers engaging with the structural biology community. We proceed by describing preliminary data that illustrates the signi.cant (and expectable) impact that fragment library composition has on search performance, and discuss the challenges this poses for the development of improved fragment libraries

    Improved fragment-based protein structure prediction by redesign of search heuristics

    Get PDF
    Difficulty in sampling large and complex conformational spaces remains a key limitation in fragment-based de novo prediction of protein structure. Our previous work has shown that even for small-to-medium-sized proteins, some current methods inadequately sample alternative structures. We have developed two new conformational sampling techniques, one employing a bilevel optimisation framework and the other employing iterated local search. We combine strategies of forced structural perturbation (where some fragment insertions are accepted regardless of their impact on scores) and greedy local optimisation, allowing greater exploration of the available conformational space. Comparisons against the Rosetta Abinitio method indicate that our protocols more frequently generate native-like predictions for many targets, even following the low-resolution phase, using a given set of fragment libraries. By contrasting results across two different fragment sets, we show that our methods are able to better take advantage of high-quality fragments. These improvements can also translate into more reliable identification of near-native structures in a simple clustering-based model selection procedure. We show that when fragment libraries are sufficiently well-constructed, improved breadth of exploration within runs improves prediction accuracy. Our results also suggest that in benchmarking scenarios, a total exclusion of fragments drawn from homologous templates can make performance differences between methods appear less pronounced

    Antiviral mode of action of bovine dialyzable leukocyte extract against human immunodeficiency virus type 1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine dialyzable leukocyte extract (bDLE) is derived from immune leukocytes obtained from bovine spleen. DLE has demonstrated to reduce transcription of Human Immunodeficiency Virus Type 1 (HIV-1) and inactivate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-魏B) signaling pathway. Therefore, we decided to clarify the mode of antiviral action of bDLE on the inhibition of HIV-1 infection through a panel of antiviral assays.</p> <p>Results</p> <p>The cytotoxicity, HIV-1 inhibition activity, residual infectivity of bDLE in HIV-1, time of addition experiments, fusion inhibition of bDLE for fusogenic cells and the duration of cell protection even after the removal of bDLE were all assessed in order to discover more about the mode of the antiviral action.</p> <p>HIV-1 infectivity was inhibited by bDLE at doses that were not cytotoxic for HeLa-CD4-LTR-尾-gal cells. Pretreatment of HIV-1 with bDLE did not decrease the infectivity of these viral particles. Cell-based fusion assays helped to determine if bDLE could inhibit fusion of Env cells against CD4 cells by membrane fusion and this cell-based fusion was inhibited only when CD4 cells were treated with bDLE. Infection was inhibited in 80% compared with the positive (without EDL) at all viral life cycle stages in the time of addition experiments when bDLE was added at different time points. Finally, a cell-protection assay against HIV-1 infection by bDLE was performed after treating host cells with bDLE for 30 minutes and then removing them from treatment. From 0 to 7 hours after the bDLE was completely removed from the extracellular compartment, HIV-1 was then added to the host cells. The bDLE was found to protect the cells from HIV-1 infection, an effect that was retained for several hours.</p> <p>Conclusions</p> <p>bDLE acted as an antiviral compound and prevented host cell infection by HIV-1 at all viral life cycle stages. These cell protection effects lingered for hours after the bDLE was removed. Interestingly, bDLE inhibited fusion of fusogenic cells by acting only on CD4 cells. bDLE had no virucidal effect, but could retain its antiviral effect on target cells after it was removed from the extracellular compartment, protecting the cells from infection for hours.</p> <p>bDLE, which has no reported side effects or toxicity in clinical trials, should therefore be further studied to determine its potential use as a therapeutic agent in HIV-1 infection therapy, in combination with known antiretrovirals.</p
    corecore